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Chapter 7: Neutron Slowing Down – Part II 

 

 

 

So, now that we saw all that, it’s finally time to move on to the slowing-down equation. We can 

recall the steady-state transport equation for a homogeneous and infinite system (no time, 

space nor angle dependence, only energy): 

  ( ) ( )  ∫      ( 
   ) (  )   ( )

 

 

 

 

We get an integral equation for the only variable left, i.e. the energy. And… We made it! Indeed, 

the slowing-down equation is simply the reduction of the Boltzmann equation to the case 

involving only one variable, the neutron velocity   -- or a related variable, the kinetic energy   or 

the lethargy   -- taken in the slowing-down domain.  

We define two quantities, the arrival density  ( ) and the slowing-down current  ( ). 

 

  

5.1. The arrival density 
 

    is the number of neutrons which, for unit time and volume, arrive in the energy interval 

between   and     . 

 ( )  ∫      ( 
 )  (    )  (  )

 

 

 

With  (    )dE denoting the probability that a neutron scattered at the energy    will be 

transferred in the energy    between   and     . 

We often set: 

  ( 
   )    ( 

 )  (    ) 

Thus, we write: 

 ( )  ∫      ( 
   )  (  )

 

 

 

 

 

We will often consider the lethargy   as a variable, and consequently write the arrival density 

as: 

 ( )  ∫   ( 
   ) (  )   
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5.2. The slowing-down current 
 

 ( ) is the number of neutrons which, for unit time and volume, are scattered from an energy 

     to an energy       

 
 

 ( )  ∫    
 

 

∫       ( 
     ) (  )

 

 

 

 

We will once again often use the concept of lethargy: 

 ( )  ∫ ∫   ( 
     ) (  )         

 

 

 

  

 

 

 

 

  

5.3. The first form of the slowing-down equation 
 

The first form of the slowing-down equation involves the “arrival density”. 

 ( )  ∫   ( 
   ) (  )   

 

  

 

 

To these neutrons arriving at lethargy   (within   ) after a scattering event, we must add the 

neutrons created directly at the lethargy   (within   ) of interest, by emission from the source. 

Let’s write this second density  . 

In the problem at hand, the neutrons arriving or created at the lethargy   (to within   ) only 

have one possible outcome, a collision (whether it causes absorption or scattering). Therefore, 

the sum of the two densities (arrival density and emission density) is equal to the total collision 

rate      , where   stands for total. 

              

 

Therefore, one can write: 

 ( )   ( )   ( )  ∫   ( 
   ) (  )     ( ) ( )
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Unless you’re lucky, this type of integral equation can only be solved numerically. The first form 

is the one used in most calculation codes. 

 

 

  

5.4. The second form of the slowing-down equation 
 

To characterize transfers, a second count can be performed. Instead of counting the neutrons 

that falls to a lethargy   (within   , still), we can count the neutrons that jump over a lethargy  . 

This is known as the slowing-down current, written as  ( ) and defined above. 

Let us imagine  

 

The slowing-down current obeys the equation: 

 (    )   ( )  
  ( )

 
    ( )     ( ) ( )   

We can simplify by    : 

  ( )

  
  ( )    ( ) ( ) 

 

Or, with respect to the energy: 

  

  
  ( )     ( ) 

 

Combined with the equation given in the definition of  , this equation constitutes the second 

form of the slowing-down equation. 

 

The two forms of the slowing-down equation are strictly mathematically equivalent. Indeed, if we 

derive the equation defining   with respect to  , we can eventually obtain the following equation: 

  ( )

  
   ( ) ( )   ( ) 

By replacing this into the second form of the slowing down equation, we re-obtain the first form. 

 

Now, let us consider elastic scattering only. In the lethargy variable, we have: 

If          : 

 (    )  
  (   

 )

   
 

 

  ( 
   )  

  ( 
 )   (   

 )

   
 

Otherwise: 

 (    )    

 

  ( 
   )    
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Alright. There we are. We wrote the slowing-down equation, in the two forms. We explained the 

principle. And I’m sure everything is crystal clear for you now! A dirty, ugly, non-see-through 

crystal though, right? 

Well, let’s try and make it shiny. In order to do that, we will have to consider four different cases, 

of increasing difficulty. 

1. Slowing-down in hydrogen without absorption 

a.     

b.      

2. Slowing-down in hydrogen with absorption 

a.     

b.      

3. Slowing-down in a heavier nuclei without absorption 

a.     

b.      

4. Slowing-down in a heavier nuclei with absorption 

a.     

b.      

 

 

5.5. Examples 
 

5.3.1. Example 1:           

 

So, in this first example, let us consider hydrogen and no absorption. For hydrogen, we have 

   . Consequently, the slowing-down equation with a mono-energetic source becomes: 

  ( ) ( )  ∫    
  ( 

 )

(   )  
 (  )   ( )

 
 

 

 

 

  ( ) ( )  ∫    
  ( 

 )

  
 (  )     (    )

  

 

 

 

We define the collision density  ( ): 

 ( )    ( ) ( ) 

So, we obtain: 

 

 ( )  ∫    
 (  )

  
    (    )

  

 

 

 

We try to eliminate the delta function term by separating the source neutrons from the collided 

flux: 

 ( )    ( )    (    ) 
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The equation becomes: 

  ( )    (    )  ∫    
  ( 

 )

  
 
 

  
    (    )

  

 

 

 

This implies that     , and then: 

 

  ( )  ∫    
  ( 

 )

  
 
  
  

  

 

 

 

 

 

 

 

To transform the integral equation into a differential equation, we take the derivative of the 

preceding equation according to: 

 

  
∫      (    )   (   )

  

  
  (   )

  

  
 ∫     

  (    )

  

 ( )

 ( )
 

 ( )

 ( )
 

 

The result is: 

   ( )

  
 
 

  
[∫    

  ( 
 )

  

  

 

]   
  ( )

 
 

 

The solution is, with a constant   of integration: 

  ( )  
 

 
 

At     , the initial condition gives: 

  (  )  
  
  

 

 

Consequently, 

  ( )  
  
 

 

 

Eventually, we get: 

 ( )  
  
 
    (    ) 

 

The solution is then: 

 ( )  
  

  ( ) 
 

  
  ( )

 (    ) 
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One can notice that the flux is proportional to    . This implies that the flux diverges when 

   , which is a consequence of the hypotheses of no absorption and infinite system. 

 

In the lethargy variable, we can write: 

 ( )     ( )   

 

 ( )    ( ) 

Hence, 

 ( )  
  
  ( )

     

 

The solution is thus constant in lethargy. This shows that the lethargy is the “right” variable to 

use in the slowing-down problems. 

 

From the previous solution, we can compute the slowing-down current: 

 ( )  ∫     
 

 

∫
   

  
  ( 

     ) (  )
 

 

    

 

In an infinite, non-absorbing medium, and for a given energy  , all source neutrons will sooner 

or later be slowed down past  . 

 

 
 

For a distributed (in energy) source  ( ), we can use the previous solution as a Green function: 

 

 ( )  ∫    
 ( )

  ( )
[
 

 
  (    )]

 

 

 
 ( )

  ( )
 ∫

  

 

 ( )

  ( )
 

 

 

 

 

 

 

5.3.2. Example 2:           

 

This example assumes a medium of hydrogen, with     . Actually, hydrogen does not absorb 

much, so this model corresponds to a mixture of hydrogen and an absorbing element of “infinite” 

mass, which therefore does not slow neutrons down. 

In this case, the slowing-down equation becomes: 

[  ( )    ( )] ( )  ∫
   

  
  ( 

 ) (  )     (    )
  

 

 

 

We introduce again the collision density, which we decompose as the sum of an uncollided 

component and a collided component   . 
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 ( )    ( ) ( )    ( )    (    ) 

 

   satisfies the equation: 

  ( )  ∫
   

  
  ( 

 )

  ( 
 )
  ( 

 )  
  

 

  (  )

  (  )

  
  

 

 

After differentiation, we obtain the following differential equation: 

   ( )

  
  [

  ( )

   ( )
]  ( ) 

 

The solution is: 

  ( )  
  (  )

  (  )

  
 
   [ ∫

   

  
  ( 

 )

  ( 
 )

  

 

] 

 

 

 

 

 

 

For the flux, the solution is: 

 ( )  
  

   ( )
 
  (  )

  (  )
   [ ∫

   

  
  ( 

 )

  ( 
 )

  

 

] 

 

 

We can verify that for     , we fall back on the result from 4.3.1. The flux is proportional to 

    out of the resonances. We can identify the resonance escape probability, i.e. the probability 

of being slowed down from energy    to energy  , without being captured by the resonances: 

 ( )     [ ∫
   

  
  ( 

 )

  ( 
 )

  

 

] 

 

 

5.3.3. Example 3:           

 

For    , we have    , and the slowing-down equation becomes: 

 

  ( ) ( )  ∫
     ( 

 )

(   )  
  ( 

 )  
  

(   )  

 
 

 

 

 

Using again the collision density    and after differentiation with relation to the variable  , we 

obtain: 

   
  

 
 

(   ) 
[  (

 

 
)    ( )] 
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This is not an ordinary differential equation, but rather a differential-difference equation. 

 

Let us consider a mono-energetic source at   . The uncollided neutrons are at   , the once-

collided neutrons are between    and    , the twice-collided between    and     . 

 

In terms of lethargy, it translates to: 

 
 

We need to solve separately in each interval… 

 

For    , the solution exhibits the Placzek transients.  

 ( ) is discontinuous at        
  

  
 is discontinuous at         

   

   
 is discontinuous at         

 

 

The asymptotic solution (valid for         ) is given by: 

 ( )
    
→   

  
   ( )

   

In terms of the energy: 

 ( )
    
→   

  
    ( )

   

 

We see that this is the hydrogen solution, divided by the slowing-down power  . 

If we consider a mixture of different moderating isotopes, we have a similar solution: 

 

 ( )
    
→   

  

 ̅   ( )
   

 

We have there defined  ̅, the average slowing-down power. This is an average weighted by the 

corresponding scattering cross-sections: 

 ̅( )  
∑ [    

( )( )] 

∑ [  
( )( ) ]

 

 

 

 

   Georges Placzek 
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5.3.4. Example 4:           

 

The slowing-down equation with elastic and isotropic scattering is: 

 

[  ( )    ( )] ( )  ∫    
  ( 

 )

(   )  
 (  )   ( )

 
 

 

 

 

Using the collision density  ( ) once again, we obtain: 

 ( )  ∫    
  ( 

 )

  (  )

 (  )

(   )  
  ( )

 
 

 

 

 

The bad news in this case is that there is no simple solution! To solve that, we’ll need to wait 

until the next lecture on the resonant absorption. 
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Well, this ends the seventh lecture. If you have any question, please let me know directly or post 

a thread in the dedicated subreddit. Do not forget, and I can’t stress this enough: if you have a 

question, then someone else in the class is wondering the same thing, or should be. Therefore, 

asking it will help you and others. 

 

I highly recommend that you actually do the math. I did not show every single step, and it would 

be very beneficial for you to take over the equations and make them yours, as it helps you clear 

things up. It also requires some effort, but that’s the price of knowledge, isn’t it? 

 

Once again, there is another thing that I should repeat. If you do not understand something, do 

not feel like it’s your fault, and do not give up. It merely means that my explanations were not 

good enough. I will gladly upgrade the class by taking into account your suggestions and 

remarks. 

 

http://www.reddit.com/r/NeutronPhysics

